Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In order to improve the quality of products during additive manufacturing, we developed a novel freezing sublimation-based method for inkjet-based three-dimensional (3D) printing technology, which can significantly improve the uniformity of material distribution in printed products. In our previous studies, we used a laboratory prototype with single droplets of inkjet solution containing colloidal particles to prove the concept of this study. However, understanding the interaction between droplets on the printing substrate surface is also crucial for determining the printing resolution and accuracy of this method, which cannot be fully investigated through single droplet-based experimental studies. To fill this knowledge gap, we conducted a series of experiments on colloidal droplet impingement, freezing, and sublimation on substrates using dual droplets. The experimental setup allowed the release of two droplets in quick succession from a modified nozzle with two needles. These droplets coalesced on the substrate surface due to spreading during their impingement processes. Observations revealed that the coalescence pattern of these two droplets varied depending on the time interval between their release. When the second droplet was released immediately after the first, their coalescence was governed by fluid dynamics. However, when the second droplet was released after the first droplet had frozen on the substrate, it spread above the ice surface of the first droplet in a relatively slower process. This observation provides new insights for the continued study and optimization of the proposed novel freezing sublimation-based 3D printing method.more » « less
-
Free, publicly-accessible full text available April 6, 2026
-
Free, publicly-accessible full text available June 25, 2026
-
Li, J B (Ed.)Free, publicly-accessible full text available February 1, 2026
-
An animal’s current behavior influences its response to sensory stimuli, but the molecular and circuitlevel mechanisms of this context-dependent decision-making are not well understood. Caenorhabditis elegans are less likely to respond to a mechanosensory stimulus by reversing if the stimuli is received while the animal turns. Inhibitory feedback from turning associated neurons are needed for this gating. But until now, it has remained unknown precisely where in the circuit gating occurs and which specific neurons and receptors receive inhibition from the turning circuitry. Here, we use genetic manipulations, single-cell rescue experiments, and high-throughput closed-loop optogenetic perturbations during behavior to reveal the specific neuron and receptor responsible for receiving inhibition and altering sensorimotor processing. Our measurements show that an inhibitory acetylcholine-gated chloride channel comprising LGC-47 and ACC-1 expressed in neuron type RIM disrupts mechanosensory evoked reversals during turns, presumably in response to inhibitory signals from turning-associated neuron SAA.more » « less
-
Jelsch, Christian (Ed.)Free, publicly-accessible full text available February 1, 2026
-
Di_Bartolomeo, Antonio (Ed.)Abstract Recently, doping guest materials such as quantum dots (QDs) into liquid crystals (LCs) has been of great interest since their addition substantially enhances the properties of LC and opens new avenues for scientific advancement. Here, we report the induction of homeotropic alignment in cells without alignment layers of the negative dielectric nematic liquid crystal, N-(4-Methoxybenzylidene)-4-butylaniline (MBBA) by doping with carbon dots (CDs ∼2.8 ± 0.72 nm). The CDs-MBBA composites (CDs concentration: 0.002, 0.01, 0.03, 0.1 and 0.3 wt%) were investigated using optical polarising microscopy, electro-optical and dielectric techniques. Polarizing optical micrographs and voltage dependent optical transmission revealed the induced homeotropic alignment for all the composites under investigation. Interestingly, the least concentrated sample, 0.002 wt% exhibited partial homeotropic alignment. However, due to light leakage, the optical transmission value below threshold voltage was relatively higher than the rest of the composites. MBBA is a negative dielectric material, hence the application of a voltage across the cell was able to switch the alignment from a dark to a bright state for all composites. However, above a certain voltage (>threshold voltage), the bright state produced some instabilities. The value of dielectric permittivity was observed to decrease with increasing concentration, confirming the effect of CDs in producing homeotropic alignment in MBBA. Measurements as a function of temperature were conducted to examine the thermal stability of the induced alignment. The alignment was found to be stable throughout the nematic phase of MBBA. The induction of such alignment without conventional alignment (i.e., rubbing of polyimides) technique can be helpful in addressing the evolving display demands by making liquid crystal displays (LCDs) and other display devices cost effective.more » « lessFree, publicly-accessible full text available November 13, 2025
An official website of the United States government

Full Text Available